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Abstract In this paper we analyze the data set gathered by Mother Jones magazine
concerning mass shootings in the United States during the period from August
20,1982 to January 31, 2017. We limit to those mass shootings with at least four
fatalities, excluding the shooter or shooters. We utilize dynamic recurrent event
models to model the occurrences of mass shootings, with the models taking into
consideration dynamic or internal covariates, such as the accumulated number of
mass shootings up to the time of interest. Of particular interest is the detection of
a contagion effect, which is the phenomenon in which the rate of occurrence of a
mass shooting increases relative to an ambient rate a certain period after a mass
shooting. Goodness-of-fit tests of the fitted dynamic models are performed using
Pearson-type statistics and forecasting of mass shootings using the fitted models
are also discussed.

Keywords Contagion Effect - Cox Regression Model - Dynamic Event-Time
Models - Exponential Regression Model - External Covariates - Internal
Covariates - Mass Shootings - Pearson-Type Goodness-of-Fit Tests - Weibull
Regression Model

1 Threat and Menace of Mass Shootings

The occurrence of a mass shooting is one of the most unnerving and depressing
events that happens in our society. Despite the fact that the proportion of deaths
from mass shootings is very minuscule relative to all deaths from gun violence,
drug-related crimes, accidents, etc. (see, for instance, [5,6]), deaths from mass
shootings send tremors to the very fabric of our society because of its senseless-
ness, its irrationality, its randomness, its unexpectedness, and its being so devoid of
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explanations. It leads to introspection and re-examination of many aspects of our
society, such as gun control and freedom to possess arms, basic rights of citizens,
violence and race relations, gender issues, diversity and immigration, political and
socio-economic issues, mental health issues, education, religious and moral values,
the press and media, the Internet, etc. It has brought deep sadness to many peo-
ple including our political leaders such as when President Obama was brought to
tears while giving a speech related to the mass shooting at Sandy Hook Elemen-
tary School in Newtown, Connecticut in December 2012, as well as to spontaneous
healing and forgiveness as when this same President started singing Amazing Grace
during his eulogy in June 26, 2015 for the Honorable Reverend Clementa Pinck-
ney and the eight other victims of the Charleston, South Carolina AME Church
massacre. See, for instance, the Washington Post article [3] about aspects of mass
shootings that have occurred in the United States over the years.

The probabilistic modeling of mass shooting occurrences is complicated by the
possible phenomenon of a ‘contagion effect’ - the tendency of a higher rate of
incidence of mass shootings a short period after an occurrence. There are many
potential explanations of such a phenomenon, if indeed it exists. One of them
is that with the heightened 24/7 media coverage of such events, potential mass
shooters consider the opportunity to commit a mass shooting as a way for recog-
nition because of the intense media coverage. However, this explanation remains
a hypothesis since it is difficult to establish this unequivocally with the available
observational data. On the other hand, it maybe possible to detect such an in-
crease in incidence of mass shootings a certain period after a mass shooting has
occurred, since under ordinary circumstances it is theoretically plausible to assume
that mass shootings are occurring on a purely random manner at some ambient
rate, for example, according to a non-homogeneous Poisson process.

A major goal of this paper is to demonstrate that general dynamic models for
recurrent events could be utilized to model real-world phenomena, in particular the
occurrence of mass shootings in our society. It will be demonstrated that dynamic
models are better able to model intrinsic features inherent in this mass shooting
phenomenon, such as the contagion effect, relative to static-type models.

2 Mother Jones Mass Shootings Data Set

The definition of a mass shooting varies in the literature, hence leading to different
data sets pertaining to the occurrences of mass shootings. In this paper we follow
the definition of a mass shooting in the magazine Mother Jones, which defines a
mass shooting as having at least four fatalities, excluding the shooter or shooters.
Mother Jones has kept track of the occurrences of such events in the United States
since 1982 [6] and we will utilize their data set. In the later stages of their recording
the occurrences of mass shootings, Mother Jones started including those events
with at least three fatalities. However, since we are interested in the modeling of
the successive occurrences of these events and since in the beginning they simply
kept track of those with at least four fatalities, we exclude those with only three
fatalities in the database. This data set, with some of the variables, is provided in
appendix section A. This is for the period from August 20, 1982 to January 31,
2017. The number of days during this time period was 7 = 12583 days. This data
set includes the following variables:
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— Date: date of the occurrence of the mass shooting.

— DayOfWeek: the day of the week when mass shooting occurred.

— Location: this is the place where the mass shooting occurred.

— Fatalities: this is the count of the number of deaths, excluding those of the
shooter or shooters, in the mass shooting.

— NumDaysBetw: the number of days between successive mass shootings.

— NumDaysFromFirst: the number of days starting from August 20, 1982, the date
of the first recorded mass shooting, which we shall consider as the time origin.
We provide some descriptive summaries of this Mother Jones data set. Figure

1 plots the number of days between mass shootings at each of the occurrences
of a mass shooting together with a distributional histogram of the inter-event
times. One may observe from this plot that the inter-event times are decreasing
as time increases. Figure 2 depicts the number of fatalities at each of the mass
shooting events together with its distributional histogram. It is not evident that
the number of event fatalities increases or decreases as time increases. Another
interesting summary is the days of the week in which mass shootings occur. Table
1 provides a frequency/percentage table for the number of mass shootings for
each of the seven days of the week. A chi-square goodness-of-fit test of the null
hypothesis that the probabilities of mass shootings for each of the days are equal
leads to a p-value of 0.1154, hence based on the observed Mother Jones data set, it
could not be concluded that some days are more prone to mass shootings at the
5% level of significance.

Fig. 1 Plot of the number of days from the time origin of mass shooting occurrences and the
inter-event times and a histogram of the inter-event times.
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Fig. 2 Plot of the number of days from origin of mass shooting occurrences and the number
of fatalities.
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3 Stochastic Models

Before proceeding, we first introduce our notation to facilitate describing the
models to be considered. We let {N(s),0 < s < 7} be the stochastic process in
which N(s) is the number of mass shootings that have occurred over (0, s] with
N(0) = 0. Note that we do not count the mass shooting at the time origin. 7
represents the time of the end of the monitoring period. We let §s denote the
history or all the information up to time s. Associated with this stochastic process
are the sequences of random variables {So = 0,51, 52,...,5k,Sk+1 = T} with
K = N(7—), which are the successive times in which the mass shootings occurred,
and {T1,T»,...,Tk,7 — Sk} which denotes the successive inter-event times. In the
Mother Jones data set, the Sy’s are given by the variable NumDaysFromFirst, while
the {T}}’s are given by the variable NumDaysBetw. We also introduce the process
{F(s),0 < s < 7} with F(s) denoting the total number of fatalities up to time s,
including the number of fatalities at the mass shooting that occurred at the time
origin. Thus, at time Sy the number of fatalities is AF(Sg) = F(Sg) — F(Sg—),
which are the values contained in the variable Fatalities in the Mother Jones data
set.

At this point we describe the general specification of the model for the counting
process {N(s),0 < s < 7}. We first introduce the backward recurrence time process
{€(s),0 < s < 7}, where £(s) = s — Sy (s—), which is the elapsed time up to s since
the last mass shooting. The general stochastic model that we consider for the
process {N(s)} is of form

Pr{dN(s) > k|Fs—} =
Mo[E(s)] exp {I(s)k + X(s)B} (ds)I{k = 1} + op(ds) (1)

where I{-} is the indicator function, I(s) = (I1(s), I2(s),...,Ip(s)) is a vector of
internal covariates, and X(s) = (X1(s), X2(s), ..., Xq(s)) is a vector of external co-
variates, both of which are measurable with respect to Fs_. We will allow the inter-
nal covariate vector to be dependent on a parameter. See [10] for discussions of in-
ternal and external covariates. The regression coefficients are x = (k1, 2, ..., fp)"
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and B = (B1,B2,-..,0¢)". The function \g(-) is a baseline hazard rate function,
which could either be parametrically specified or non-parametrically specified. Ob-
serve that the effective age used in Ao(-) is the time elapsed since the last mass
shooting, the backward recurrence time. Our reason for doing so is our thinking
that upon occurrence of a mass shooting, a re-start or a renewal transpires. At the
same time, we include in the model the potential impact of internal covariates and
external covariates which could increase or decrease the intensity of mass shoot-
ings relative to the rate A\o(-). This model belongs to the general class of dynamic
recurrent event models in [13].
If we define the process {A(s),s < s <7} via

A(s) = /O " MolE(0)] exp {T(w) + X (v)3} do, 2)

then the process {M(s),0 < s < 7} with M(s) = N(s) — A(s) is a square-integrable
zero-mean martingale with predictable quadratic variation process {(M)(s),0 <
s < 7} given by (M)(s) = A(s). For theoretical background, see [2]. The model
parameters are \o(+), , 8, and any other parameter in the internal covariate vector.
Under this model, the likelihood function based on the data {N(s),0 < s <7} is

K
Ly = [H Ao () exp {L(Sk )k + X(Sk)ﬂ}] %

k=1

exp {— /(: Xo[€(v)] exp {I(v)k + X (v)B} dv} .

By taking specific forms of Ag(+) and the internal covariates I and external covari-
ates X, we obtain special models. In the succeeding sections, we consider fitting
simple models belonging to this general class of models. We defer consideration
of models that have external covariates to future papers, but focus instead in this
paper on those with an internal covariate representing the number of previous
mass shootings. Likelihood-based inference for these models have been discussed
in several papers. When the model is parametric in the sense that the baseline
hazard A\o(-) belongs to a parametric family, then the vector of ML estimators is
the maximizer of L,. If the baseline hazard is non-parametrically specified, the
approach using profile and/or partial likelihoods are as discussed in [13].

4 HPP Model

The homogeneous Poisson process (HPP) is typically the first model to consider
when fitting recurrent event data. As such, we first consider an HPP as a possible
model for the occurrences of mass shootings. The HPP model arises from the gen-
eral model by taking Ao(t) = A and excluding the internal and external covariates
from the model. Thus, there is only one model parameter, A, which is the rate
of mass shooting occurrences. See the recent pedagogical paper [12] concerning
the HPP model. We fitted this HPP model using the Mother Jones data set. The
maximum likelihood estimate (MLE) of X is

. K 78
A= T 12583 0.0062,
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Fig. 3 Plot of the number of days from origin of mass shooting occurrence and the cumulative
number of mass shootings. Time origin corresponds to August 20, 1982. The red line passing
through zero has slope equal to A = 0.0062, which is the maximum likelihood estimate of the
rate of the fitted HPP model.
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where K = 78 is the total number of observed mass shootings over the monitoring
period (0,7]. In our setting, the monitoring period is from 0 days (time origin)
to 7 = 12583 days. The times of mass shootings are provided by the variable
NumDaysFromOrigin in the Mother Jones data set. A plot of this data is provided in
Figure 3. The last point in this plot corresponds to the pair of value (7, 78), where
78 is the value of K. The straight line passing through zero is the line whose slope
is A\

In [12] a procedure for testing the adequacy of the HPP model, given event
occurrence times over a monitoring interval, was presented. This procedure was
called the V-test. Applying this V-test, we find the value of the statistic to be
V = 224.26 with an associated p-value of 0.0003 for testing the null hypothesis
that the HPP model holds. Thus, based on the Mother Jones data set, the HPP
model is an inadequate model for the occurrences of mass shootings in the United
States. The inadequate fit could also be noted from the fact that the line At
is always above the graph of (Sg,k),k = 0,1,2,..., K, where Sy is the time of
occurrence of the kth mass shooting. If an HPP model is adequate, we would see
that the straight line and the graph of {(Sk,k)} will be close to each other. In
fact, the observed plot appears to indicate that the inter-event times of the mass
shootings are ominously getting stochastically shorter as time increases.

5 Dynamic Recurrent Event Models

Noting that the HPP model does not fit well the observed data, we now consider a
more general dynamic model for the occurrences of mass shootings. The simplest
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parametric dynamic model that utilizes N (s—) as the sole dynamic covariate is the
Weibull dynamic regression model, which includes as a special case the exponential
dynamic regression model (cf., [10]). This specifies that

Xo(t;0 = (a,m) = (am)(yt)* ™" and  I(s) = N(s—).

When o = 1, then this is the dynamic exponential regression model. When Aq(-)
is simply assumed to be some hazard rate function, then we obtain a dynamic
Cox proportional hazards model [4]. These models could be fitted easily using the
survreg and coxph object functions in the survival library in the R statistical
platform [14]. The results of these model fittings are provided below.

For the exponential dynamic regression model the fitted model has

7 =0.003319 and & =0.019541.

It is found that  is significantly different from zero. In our initial fittings, we
also included the number of fatalities of the preceding mass shooting, but this did
not turn out to be a significant predictor, hence we did not include this dynamic
covariate in the Weibull and Cox PH model fittings. For the Weibull dynamic
regression model, the estimates of the parameters are

& = 1.1285,7 = 0.0031, x = 0.0215.

It is found that « is significantly different from 1.0 (the exponential baseline hy-
pothesis), and « is significantly different from 0.

Fitting the semi-parametric Cox proportional hazards model with I(s) = N(s—)
as the internal dynamic covariate, we find the estimate of the associated regression
coefficient to be

/= 0.02012.

A test of the hypothesis k = 0 leads to the conclusion that the dynamic covariate
is an important predictor.

In all of these fits, we note that the estimates of the regression coefficient of
N(s—) are all positive, indicating that there is an increase in the rate of occurrence
of mass shootings with an increase in the number of occurrences of previous mass
shootings. Of course, this could simply be that N(s—) is a surrogate of calendar
time and as time increases there is an increase in the rate of mass shootings,
possibly due to an increase in the population of people or the higher availability
of guns. See, for instance, [5,15,6].

For these three models, we also estimated the baseline cumulative hazard func-
tion, which is a functional parameter encoding the rate of mass shootings after
correcting for the effect of time or prior mass shootings. Figure 4 provides the
three estimates together. Observe that all three estimates are all close to being
linear. However, note that the nonparametric (or semi-parametric) estimate, the
so-called Aalen-Breslow-Nelson (ABN) estimate, obtained via the Cox PH model
shows a bump over the linear and Weibull fits in the region from about 300 days
to 500 days. This bump may be a manifestation of the so-called contagion effect
with the fitted Weibull baseline serving as an ambient rate of the occurrence of
mass shootings. However, we again point out that this is a difficult hypothesis
to prove with the available data. At the same time this demonstrates a potential
advantage of the semi-parametric model over the parametric Weibull model since
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Fig. 4 Super-imposed plots of the estimated baseline cumulative hazard functions under the
dynamic exponential, Weibull, and Cox proportional hazards models, with internal covariate
being the number of prior mass shootings.
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it may have the ability to potentially tease out such contagion effect. To further
explore this issue, we present a plot of the estimates of the baseline hazard prob-
abilities in Figure 5 and obtain associated kernel estimates of the baseline hazard
rate function Ao(-) based on this ABN estimate. The kernel estimator used is given
by

1 (v—t 1yt
So(t) = [ i () ddow) = 0 1k (1) A
o0 = [ 5 () o) = 323 () A
where ¢;,l = 1,2,..., L, are the jump times of the ABN estimate Ag, which are
Aot = Ao(ty) — Ao(t;—),1 = 1,2,..., L. These are the estimated baseline hazard
probabilities depicted in Figure 5. K(-) is a kernel function which we set to be the
Epanechnikov kernel

K(v) = (1—v?)31{jv] < 1}.

In our implementation, we specified four values for the bandwidth h: 100, 200,
300, and 400. Figure 6 shows these kernel estimates of the baseline hazard rate
Xo(+). In all four estimates, we notice the increasing trend and the bump(s) in
the hazard rate estimates from time zero until about 300 days, which indicate an
increase in the chances of another mass shooting over this period just after a mass
shooting. In fact, looking at the first estimate corresponding to the bandwidth
h = 100, leading to the wiggliest estimate, we notice the first bump in the baseline
hazard rate estimate at 71 days (hazard rate estimate of 0.002898) and the second
bump at 296 days (hazard rate estimate of 0.004923). These first two bumps in
the baseline hazard estimate may be an indication of the presence of a contagion
effect in mass shootings.
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Fig. 5 Estimates of the discrete hazard probabilities based on the ABN estimate of Ag(-).
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Fig. 6 Super-imposed plots of the kernel estimates of the baseline hazard rate function cor-
responding to four bandwidths. The bandwidths chosen were h € {100,200, 300,400} days.
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There has been papers discussing the possibility of such a contagion effect. The
paper [15] discussed the potential impact of media coverage after mass shootings
and suicides in the context of increasing the incidence of subsequent mass shootings
or suicides. The authors presented mathematical contagion models that tried to
tease out the contagion effect arising from the enhanced media coverage. They
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also examined the impact of mental health illness and firearm availability in states.
Based on the data sets that they analyzed about mass killings and school shootings
they found a significant contagion effect. The Pacific Standard article [11] also
examined the impact of intense media coverage of mass shootings in the context
of an increasing incidence of mass shootings over time.

5.1 Bootstrapping Dynamic Recurrent Event Models

In this subsection we discuss the process of bootstrapping from these dynamic
recurrent event models. This will enable us to estimate the standard errors of esti-
mates, and also enable the assessment of significance in goodness-of-fit procedures
discussed in the next subsection.

5.1.1 Dynamic Weibull Model

How do we generate the bootstrap samples? Such bootstrap sample generation
should take into account the dynamic aspects of the event generation. Consider
first the situation where the baseline hazard is Weibull. Based on the observed
data, we are able to estimate the Weibull parameters («,n) and the regression
coefficient k. Let the estimates be denoted by (&,7,%). To generate one (para-
metric) bootstrap sample over the monitoring period [0, 7], we could implement
the algorithm presented in appendix section B, which is coded in the R syntax.
This algorithm incorporates the dynamicity of the event occurrences. Through
this bootstrapping procedure we are able to obtain nonparametric estimates of
the standard errors of estimates of the model parameters. For the fitted Weibull
regression, using Mboot = 10000 bootstrap replications, we found the following
bootstrap standard error (bSE’s) estimates of the parameter estimates:

bSE(a) = 0.10888; bSE(7) = 0.00061; and bSE(i) = 0.00618.

The histograms of the 10000 bootstrap estimates of «, 1, and k are provided in
Figure 7. We note that in our bootstrap implementation we put an upper limit
to the observed number of events in a bootstrap sample to 1000 (the maxEvents
in the input to the algorithm). Theoretically, there is the possibility of explosion,
that is, the number of events observed in a finite interval increases without bound
(see, for instance, [7]) with positive probability. In practical situations, such an
eventuality will not be observed, hence putting a large upper limit to the number
of observed events is an acceptable solution to this ‘blowing up’ phenomenon,
though this solution may induce some bias. However, we assess that the induced
bias is negligible since the proportions of bootstrap samples reaching the upper
limit of 1000 was very low out of the 10000 bootstrap samples.

5.1.2 Dynamic Cox Model

When a non-parametric baseline hazard rate function A\o(+) is specified, the portion
in the algorithm for the Weibull model containing the two code lines

U
T

runif (1)
(-exp(-kappa*Xcur)*log(U))~(1/alpha)/eta
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Fig. 7 Histograms of the estimates of o, 1, and k based on the 10000 bootstrap samples under
the dynamic Weibull regression model.
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need to be replaced by generating a value from the observed inter-event times with
probabilities induced by the ABN estimate of Ag(-). The replacement code line is
presented after Lemma 1.
To amplify, denote the estimate of Ag(-) by Ap(-) with jump points v; < vg <
. < vg. For a covariate value of z, then the hazard probabilities under the
dynamic model are

Aj(z) = hojexp{iz},j=1,2,..., L, (3)

where Ao; = Ao(vj) — Ao(vj_1) for j = 1,2,...,L are the estimates of the base-
line hazard probabilities at the observed complete inter-event times. It is possible
that 5\](:0) as computed exceeds 1, so if this occurs we set the value to 1. How-
ever, these hazard probabilities need not induce a proper set of probabilities on
the set {vi,v2,...,vp} if :\L(a:) < 1. To induce a proper set of probabilities, we
always set A 1(z) = 1, equivalent to considering the largest observed gap-time as
complete. That imposing this condition leads to a proper set of probabilities on
{v1,v2,...,vp} follows from the following lemma.

Lemma 1 Let A1, Xa,..., A, be such that Aj € [0,1],5 =1,2,...,L—1, and A\j, = 1.
Then, letting

j—1
i=1

we have Z]If:lpj =1, that is, p1,p2,...,pL, determines a probability mass function.

Proof A simple inductive proof establishes the result, so we leave the proof as an
exercise.
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For these j\j (z),7=1,2,..., L, with L (z) =1, we then define the probabilities

B(z) = {H[l - xj(x)]} A(2)j=1.2... L
=1

An observation is then generated from the set v = {v1,v2,...,v} according to
the probabilities p = (p1 (), p2(x),...,pr(x)) by using the R code

T = sample(v,1,prob=p)

with x = Xcur in the computation in (3). This is the command that replaces the two
code lines mentioned above to generate an observation from the semi-parametric
dynamic Cox model. The algorithm in R syntax is provided in appendix section C.
It takes as input the arguments timein and hazin, which are the distinct complete
inter-event times and the baseline hazard probability estimates, respectively, from
the ABN estimate.

In this nonparametric bootstrap, the issue of explosion does not arise since
there are just a finite number of possible positive values of the generated inter-event
time. Also, as in the parametric model, we could use this bootstrap procedure to
obtain an estimate of the standard error of the estimator of k, whose estimate is & =
0.02012. The bootstrap estimate of its standard error, based on 10000 bootstrap
replications, is bSE(#) = 0.00582. The estimate of the bootstrap distribution of
the estimator of x based on the 10000 bootstrap replications is displayed in Figure
8.

Fig. 8 Histogram of the estimates of k based on the 10000 bootstrap samples under the
dynamic Cox regression model.
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5.2 Goodness-of-Fit Testing of Fitted Models

In the simple dynamic models that were fitted, if we partition the monitoring
period (0,7] into L + 1 intervals given by 0 = tg < t1 <ta < ... <ty <tpy1 =T,
then the number of events observed in the interval I} = (¢;_1,t;] is Oy = N(¢;) —
N(t;_1). If the assumed model holds, then the estimated expected number of events
in the interval I; is given by

~ 't ~ 2,
B = / SolE())e*N )

ti—1
K+1  min(t;,5;)
= Z / I{max(t;_1, ijl) < min(t, SJ)} X
=1 max(t;—1,Sj_1)
5\0(1) - SN(i,_))eﬁN(v_)dU
K+1
= Z e"‘O_l)I{maX(tl_l,Sj_l) < min(t;, Sj)} x
j=1

min(tl,Sj)—Sj_l .
/ Ao(w)dw

max(t;—1,5j-1)—S;j—1
K+1 o
= > UV {max(y -y, $j-1) < min(y, S5)} x
i=1

[Ao(min(t;, $5) = 8j-1) = Ao(max(ti1,8;-1) = Sj-1)] .
For the Weibull baseline, we will have
Ao(t) = (A)*I{t > O};

whereas, for the non-parametrically specified baseline, we will use the ABN esti-
mate of Ag(-) from the coxph fit to evaluate Ag(t).

Analogously to the goodness-of-fit test of Akritas [1] (see also the goodness-of-
fit procedure in [8,9]), we may use the Pearson-type test statistic

L+1 AN
(01 - L)
=Yy -t

for assessing the goodness-of-fit of the fitted model. Significance of the observed
value of Q? could be assessed by comparing to a chi-square distribution with
degrees-of-freedom L minus the number of estimated parameters, or by generating
bootstrap samples and obtaining an estimate of the null (that is, that the assumed
model is adequate) sampling distribution of the Q? statistic.

A bootstrap assessment of the significance of the Q? appears to be more re-
liable in this case since if we utilize the ML estimates of the parameters based
on the ungrouped data, then the chi-square distribution may not be the appro-
priate approximate distribution to use. There is also the un-examined impact of
the randomness of K, the number of events observed over the monitoring period.
We believe that the bootstrap approximation of the P-value automatically incor-
porates these issues. There is also the subjective decision of how many intervals
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Table 2 The interval upper boundaries together with the observed frequencies and estimated
expected frequencies under the dynamic Weibull model and the dynamic Cox model in the
implementation of the Pearson-type goodness-of-fit for the fitted models. The lower boundary
of the first interval is zero.

Interval Upper | Observed Freq Expected Freq Expected Freq
Boundary Frequency (Weibull) (Cox)
1398.11 2 4.899 4.328
2796.22 5 9.647 9.418
4194.33 10 8.387 8.240
5592.44 4 9.270 9.028
6990.55 11 10.191 10.735
8388.67 4 13.479 12.491
9786.78 12 12.989 13.5637
11184.89 14 15.065 14.625
12583.00 16 19.553 19.169
Q? =14.78 Q% =13.00
(Bootstrap-P = .07) | (Bootstrap-P = .16)

in the partition and what the boundaries should be. The simplest, but which may
not be best, is to use equal length intervals, and to have L ~ v/K intervals in the
partition. Clearly, these issues require more in-depth theoretical studies. Our goal
in this paper is to simply utilize a simple ad hoc goodness-of-fit procedure to assess
the adequacy of the fitted models.

We implemented these ideas by developing appropriate object functions in R
[14]. When we applied to the mass shooting data set, we used 10000 bootstrap
replications, equal-length partition, and with . = 8. Table 2 presents the inter-
vals together with the observed frequency and the estimated expected frequencies
under the dynamic Weibull model and dynamic Cox model. Indicated in the last
two rows of this table are the values of Q2 together with their bootstrap P-values.
For the dynamic Weibull model, we find Q2 = 14.7870 and the associated boot-
strap P-value is 0.0769. This P-value is close to 0.05, possibly indicating that the
dynamic Weibull model is not the most appropriate model. Figure 9 presents the
histogram of the Q? goodness-of-fit statistic for the 10000 bootstrap samples un-
der the Weibull model. For the dynamic Cox model, we find Q% = 13.0051 with
an associated P-value of 0.1659. This appears to indicate that the dynamic Cox
model is a better fit to the data than the dynamic Weibull model. We hypothe-
size that this could be due to the fact that the Weibull model will not be able to
model a contagion effect or a bump in the baseline hazard, whereas the dynamic
Cox model with a nonparametrically-specified baseline hazard will be able to do
so. But this remains a hypothesis and this will be difficult to validate with the
existing data. We also mention that among the 10000 bootstrap replications, there
were some outlying values of the Q2-statistic under the dynamic Cox model. This
could be seen from the histograms of the Q2 and the logarithm of this Q? statistic
which are both depicted in Figure 10.

6 Forecasting Mass Shootings

An oft-quoted saying, attributed to different people (Nostradamus, Niels Bohr,
Mark Twain, Yogi Berra, others), is that:
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Fig. 9 Histograms of the Q2 goodness-of-fit statistic based on the 10000 bootstrap samples
under the dynamic Weibull regression model. The vertical blue line corresponds to the observed
Q2-statistic.
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It’s Difficult to Make Predictions, Especially About the Future.

And so it is the case with predicting or forecasting when the next mass shooting
in the United States is going to occur, even with the aid of the stochastic models
fitted to the observed data. Mass shootings are as unpredictable as earthquakes.
However, these fitted models provide some guidance on future mass shooting oc-
currences. For instance, starting from February 1, 2017, one may inquire about the
probability that at least one mass shooting will occur in the US during the next
four months, that is, until May 31, 2017, which covers 120 days, given the infor-
mation until January 31, 2017. Using the fitted dynamic Cox model, an estimate
of this probability is

Pr{25 < T* < 146|data until 1/31/2017}

= 1—Pr{T" > 146|data until 1/31,/2017}

2 2 eXP{(R)('m)}
—1- [F0(146) /F0(25)]

=1- | ]

{I: 25<,<146}
=1-0.1780

= 0.8220,

exp{(.02012)(78)}

where T™ represents the time-to-occurrence of the next mass shooting starting
from January 6, 2017, the time of last mass shooting prior to February 1, 2017.
The value of 25 is the number of days from 1/6/2017 until 2/1/2017, while the
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Fig. 10 Histograms of the Q2 and log(Q?) goodness-of-fit statistics based on the 10000 boot-
strap samples under the dynamic Cox regression model. The vertical blue line corresponds to
the observed Q2 and log(Q?) statistics.
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value of 146 is the number of days from 1/6/2017 until 5/31/2017. Note that

the division by Fy(25) in the second line is because information up to 1/31/2017
indicated that T > 25, which becomes a conditioning event.

Thus, there is a not-so-insignificant probability of about 82% of at least one
mass shooting occurring during the period from February 1, 2017 to May 31, 2017,
given the information up to January 31, 2017. Of course, from the perspective of
helping to prevent the occurrence of a mass shooting, the probability estimate
above will not be of direct help since it does not pinpoint when and where a
mass shooting will occur nor could it help in identifying potential mass shooter(s).
[Note: As of May 1, 2017, the date of initial draft of this manuscript, there has
indeed been at least one event since February 1, 2017 that qualifies as a mass shoot-
ing. The first occurred last February 6, 2017 in Yazoo City, Mississippi claiming
four victims, and another one at Toomsuba, Mississippi last February 21, 2017,
also with four victims.]

7 Concluding Remarks

In this paper we analyzed data pertaining to the commission of a mass shooting
in the United States spanning the period from August 20, 1982 to January 31,
2017. The data was compiled by the magazine Mother Jones, and it includes mass
shootings with at least four fatalities, excluding the shooter or shooters. The ad-
vent of a mass shooting is one of the most unnerving events in our society. The
analysis performed in this paper utilized dynamic event-time models, dynamic in
the sense that the occurrence of a mass shooting depends to some extent on what
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has transpired before. We fitted four models: the homogeneous Poisson process, a
dynamic exponential regression model, a dynamic Weibull regression model, and
a dynamic Cox model, the latter being a semi-parametric model. We found that
the first two models did not fit the data well, while the Weibull-based and the
Cox-based models offer better fits to the observed data, with the Cox-based model
having the advantage in that it potentially detects a contagion effect through the
nonparametric baseline hazard. A contagion effect is one when the rate of occur-
rence of a mass shooting bumps up a certain period after the last mass shooting,
and this has been a topic of interest in several papers dealing with mass shootings.
However, we emphasize that it is difficult to validate the presence of this conta-
gion effect on the basis of available data. Both the dynamic Weibull regression
and dynamic Cox regression fitted models indicate that the number of prior mass
shootings has an effect in terms of the waiting-time for the next occurrence of a
mass shooting, with this effect being to stochastically shorten such waiting time.
It is certainly conceivable that the number of prior mass shootings serves as a
surrogate to calendar time and that as time progresses, the rate of incidence of
mass shootings also increases owing to an increase in availability of guns or due
to an increasing population size.

We also proposed methods for validating the fitted models through Pearson-
type goodness-of-fit tests. However, the determination of the significance of the
observed values of these Pearson-type test statistics is done via bootstrapping
methods. This led to an examination of the proper way in which to generate
bootstrap samples that incorporates the dynamic mechanisms in which events
occur. Using the proposed goodness-of-fit methods, we found that the Cox-based
model best fits the observed data, though the procedure did not lead to rejection
(at level of significance 5%) of the dynamic Weibull model. We also discussed the
issue of forecasting the advent of a mass shooting using the fitted Cox dynamic
model, with the caveat that the fitted models will not truly be of practical value in
terms of preventing when and where a mass shooting will occur nor in pinpointing
potential mass shooter(s).

Further studies are warranted regarding the modeling and analysis of mass
shootings. More elaborate dynamic models incorporating information from exter-
nal covariates and possibly with additional information other than those provided
by the Mother Jones data set will clearly be of interest. It would also be interest-
ing to change the internal covariate from the number of mass shootings that have
occurred since the time origin to the number of mass shootings that have occurred
within a certain period, say two years, prior to the time under consideration.
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A Mother Jones Mass Shootings Data Set

In the data set below, the variable name abbreviations are: F = Fatalities; T = NumDays-
Betw; and S = NumDaysFromFirst. The time origin coincides with 8/20/82, so the value of S
corresponds to the number of days elapsed since this date.

W ~NO O WN =

©

10
11
12
13
14
15
16
17
18
19
20
21
22
23

25
26

Date DayOfWeek Location F T S
6/29/84 Thursday Dallas, Texas 6 679 679
7/18/84  Tuesday San Ysidro, California 22 19 698
8/20/86  Tuesday Edmond, Oklahoma 15 763 1461
4/23/87 Wednesday Palm Bay, Florida 6 246 1707
2/16/88 Monday Sunnyvale, California 7 299 20086
1/17/89 Monday Stockton, California 6 336 2342
9/14/89 Wednesday Louisville, Kentucky 9 240 2582
6/18/90 Sunday Jacksonville, Florida 10 277 2859
10/16/91  Tuesday Killeen, Texas 24 485 3344
11/1/91 Thursday Iowa City, Iowa 6 16 3360
11/14/91 Wednesday Royal Oak, Michigan 5 13 3373
5/1/92 Thursday Olivehurst, California 4 169 3542
10/15/92 Wednesday Watkins Glen, New York 5 167 3709

7/1/93 Wednesday San Francisco, California 9 259 3968
8/6/93 Thursday Fayetteville, North Carolina 4 36 4004
12/7/93 Monday Garden City, New York 6 123 4127
12/14/93 Monday Aurora, Colorado 4 7 4134
6/20/94 Sunday Fairchild Air Force Base, Washington 5 188 4322
4/3/95 Sunday Corpus Christi, Texas 6 287 4609
2/9/96 Thursday Fort Lauderdale, Florida 6 312 4921
9/15/97 Sunday Aiken, South Carolina 4 584 5505
12/18/97 Wednesday Orange, California 5 94 5599
3/6/98 Thursday Newington, Connecticut 5 78 5677
3/24/98 Monday Jonesboro, Arkansas 5 18 5695
5/21/98 Wednesday Springfield, Oregon 4 58 5753
4/20/99 Monday Littleton, Colorado 13 334 6087
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27 7/29/99 Wednesday Atlanta, Georgia 9 100 6187
28 9/15/99  Tuesday Fort Worth, Texas 8 48 6235
29 11/2/99 Monday Honolulu, Hawaii 7 48 6283
30 12/30/99 Wednesday Tampa, Florida 5 46 6329
31 12/26/00 Tuesday Wakefield, Massachusetts 7 374 6703
32 2/5/01 Monday Melrose Park, Illinois 5 41 6744
33 7/8/03 Tuesday Meridian, Mississippi 7 883 7627
34 12/8/04 Wednesday Columbus, Ohio 5 519 8146
35 3/12/05 Saturday Brookfield, Wisconsin 7 94 8240
36 3/21/05 Monday Red Lake, Minnesota 10 9 8249
37 1/30/06 Monday Goleta, California 8 315 8564
38 3/25/06 Saturday Seattle, Washington 7 54 8618
39 10/2/06 Monday Lancaster County, Pennsylvania 6 191 8809
40 2/12/07 Monday Salt Lake City, Utah 6 133 8942
41 4/16/07 Monday Blacksburg, Virginia 32 63 9005
42 10/7/07 Sunday Crandon, Wisconsin 6 174 9179
43 12/5/07 Wednesday Omaha, Nebraska 9 59 9238
44  2/7/08 Thursday Kirkwood, Missouri 6 64 9302
45 2/14/08 Thursday DeKalb, Illinois 6 7 9309
46 6/25/08 Wednesday Henderson, Kentucky 6 132 9441
47 3/29/09 Sunday Carthage, North Carolina 8 277 9718
48  4/3/09 Friday Binghamton, New York 14 5 9723
49 11/5/09 Thursday Fort Hood, Texas 13 216 9939
50 11/29/09 Sunday Parkland, Washington 4 24 9963
51 8/3/10 Tuesday Manchester, Connecticut 9 247 10210
52 1/8/11 Saturday Tucson, Arizona 6 158 10368
53 9/6/11  Tuesday Carson City, Nevada 5 241 10609
54 10/14/11 Friday Seal Beach, California 8 38 10647
55 2/22/12 Wednesday Norcross, Georgia 5 131 10778
56  4/2/12 Monday Oakland, California 7 40 10818
57 5/20/12 Sunday Seattle, Washington 6 48 10866
58 7/20/12 Friday Aurora, Colorado 12 61 10927
59 8/5/12 Sunday Oak Creek, Wisconsin 7 16 10943
60 9/27/12 Thursday Minneapolis, Minnesota 7 53 10996
61 12/14/12 Friday Newtown, Connecticut 28 78 11074
62 3/13/13 Wednesday Herkimer County, New York 5 89 11163
63 4/21/13 Sunday Federal Way, Washington 5 39 11202
64 6/7/13 Friday Santa Monica, California 6 47 11249
65 7/26/13 Friday Hialeah, Florida 7 49 11298
66 9/16/13 Monday Washington, D.C. 12 52 11350
67 2/20/14 Thursday Alturas, California 4 157 11507
68 5/23/14 Friday Santa Barbara, California 6 92 11599
69 10/24/14 Friday Marysville, Washington 5 154 11753
70 6/17/15 Wednesday Charleston, South Carolina 9 236 11989
71 7/16/15 Thursday Chattanooga, Tennessee 5 29 12018
72 10/1/15 Thursday Roseburg, Oregon 9 77 12095
73 12/2/15 Wednesday San Bernardino, California 14 62 12157
74 2/20/16 Saturday Kalamazoo County, Michigan 6 80 12237
75 6/12/16 Sunday Orlando, Florida 49 113 12350
76 7/7/16 Thursday Dallas, Texas 5 25 12375
77 9/23/16 Friday Burlington, WA 5 78 12453
78 1/6/17 Friday Fort Lauderdale, Florida 5 105 12558
79 <NA> <NA> <NA> NA 25 12583

B Bootstrap Sampling Algorithm: Dynamic Weibull Model

BootSampWeibull <-
function(alpha=1.1287,eta=0.0031,kappa=0.02146,tau=12583,maxEvents=1000)
{
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S=0

Svec = 0

Tvec = NULL
Deltavec = NULL
Xvec = 0

Xcur = 0

K=0

ok = TRUE

while(ok) {

U
T

runif (1)
(-exp(-kappa*Xcur)*log(U)) ~(1/alpha)/eta

if ((S+T) < tauw) {
K=K+ 1
if (K > maxEvents) {ok=FALSE; print("Explosion Occurring!")} #cut-off explosion
S=8+T
Xcur = Xcur + 1
Svec = c(Svec,S)
Xvec = c(Xvec,Xcur)
Tvec = c(Tvec,T)
Deltavec = c(Deltavec,1)
}
else {
ok = FALSE
Svec = c(Svec,tau)
Xvec = c(Xvec,Xcur)
Tvec = c(Tvec,tau-S)
Deltavec = c(Deltavec,0)
}
}

return(list(alpha=alpha,eta=eta,kappa=kappa,tau=tau,
K=K,Svec=Svec,Tvec=Tvec,Deltavec=Deltavec,Xvec=Xvec))

Y

C Bootstrap Sampling Algorithm: Dynamic Cox Model

BootSampCoxPH <-
function(timein=time,hazin=haz,kappa=0.02012,tau=12583)
{

L = length(timein)
probs = rep(0,L)

S=0

Svec = 0

Tvec = NULL
Deltavec = NULL
Xvec = NULL
Xcur = 0

K=0

ok = TRUE

while(ok) {
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curhaz = hazin*exp(kappa*Xcur)
for(1l in 1:L) {curhaz[l] = min(c(1,curhaz[1]))}
curhaz[L] = 1

probs[1] = curhaz[1]
for(l in 2:L) {probs[l] = probs[1-1]*(1/curhaz[1-1] - 1)*curhaz[1]}

T = sample(timein,1,prob=probs)

if ((S+T) < tau) {
K=K+ 1
S=8+T
Xcur = Xcur + 1
Svec = c(Svec,S)
Xvec = c(Xvec,Xcur)
Tvec = c(Tvec,T)
Deltavec = c(Deltavec,1)
¥
else {
ok = FALSE
Svec = c(Svec,tau)
Xvec = c(Xvec,Xcur)
Tvec = c(Tvec,tau-S)
Deltavec = c(Deltavec,0)
}
}
return(list (kappa=kappa,tau=tau,kK=K,Svec=Svec,Tvec=Tvec,
Deltavec=Deltavec,Xvec=Xvec,tau=tau))

}
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Abstract In this paper we analyze the data set gathered by Mother Jones magazine
concerning mass shootings in the United States during the period from August
20,1982 to January 31, 2017. We limit to those mass shootings with at least four
fatalities, excluding the shooter or shooters. We utilize dynamic recurrent event
models to model the occurrences of mass shootings, with the models taking into
consideration dynamic or internal covariates, such as the accumulated number of
mass shootings up to the time of interest. Of particular interest is the detection of
a contagion effect, which is the phenomenon in which the rate of occurrence of a
mass shooting increases relative to an ambient rate a certain period after a mass
shooting. Goodness-of-fit tests of the fitted dynamic models are performed using
Pearson-type statistics and forecasting of mass shootings using the fitted models
are also discussed.

Keywords Contagion Effect - Cox Regression Model - Dynamic Event-Time
Models - Exponential Regression Model - External Covariates - Internal
Covariates - Mass Shootings - Pearson-Type Goodness-of-Fit Tests - Weibull
Regression Model

1 Threat and Menace of Mass Shootings

The occurrence of a mass shooting is one of the most unnerving and depressing
events that happens in our society. Despite the fact that the proportion of deaths
from mass shootings is very minuscule relative to all deaths from gun violence,
drug-related crimes, accidents, etc. (see, for instance, [5,6]), deaths from mass
shootings send tremors to the very fabric of our society because of its senseless-
ness, its irrationality, its randomness, its unexpectedness, and its being so devoid of
explanations. It leads to introspection and re-examination of many aspects of our
society, such as gun control and freedom to possess arms, basic rights of citizens,
violence and race relations, gender issues, diversity and immigration, political and
socio-economic issues, mental health issues, education, religious and moral values,
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the press and media, the Internet, etc. It has brought deep sadness to many peo-
ple including our political leaders such as when President Obama was brought to
tears while giving a speech related to the mass shooting at Sandy Hook Elemen-
tary School in Newtown, Connecticut in December 2012, as well as to spontaneous
healing and forgiveness as when this same President started singing Amazing Grace
during his eulogy in June 26, 2015 for the Honorable Reverend Clementa Pinck-
ney and the eight other victims of the Charleston, South Carolina AME Church
massacre. See, for instance, the Washington Post article [3] about aspects of mass
shootings that have occurred in the United States over the years.

The probabilistic modeling of mass shooting occurrences is complicated by the
possible phenomenon of a ‘contagion effect’ - the tendency of a higher rate of
incidence of mass shootings a short period after an occurrence. There are many
potential explanations of such a phenomenon, if indeed it exists. One of them
is that with the heightened 24/7 media coverage of such events, potential mass
shooters consider the opportunity to commit a mass shooting as a way for recog-
nition because of the intense media coverage. However, this explanation remains
a hypothesis since it is difficult to establish this unequivocally with the available
observational data. On the other hand, it maybe possible to detect such an in-
crease in incidence of mass shootings a certain period after a mass shooting has
occurred, since under ordinary circumstances it is theoretically plausible to assume
that mass shootings are occurring on a purely random manner at some ambient
rate, for example, according to a non-homogenecous Poisson process.

A major goal of this paper is to demonstrate that general dynamic models for
recurrent events could be utilized to model real-world phenomena, in particular the
occurrence of mass shootings in our society. It will be demonstrated that dynamic
models are better able to model intrinsic features inherent in this mass shooting
phenomenon, such as the contagion effect, relative to static-type models.

2 Mother Jones Mass Shootings Data Set

The definition of a mass shooting varies in the literature, hence leading to different
data sets pertaining to the occurrences of mass shootings. In this paper we follow
the definition of a mass shooting in the magazine Mother Jones, which defines a
mass shooting as having at least four fatalities, excluding the shooter or shooters.
Mother Jones has kept track of the occurrences of such events in the United States
since 1982 [6] and we will utilize their data set. In the later stages of their recording
the occurrences of mass shootings, Mother Jones started including those events
with at least three fatalities. However, since we are interested in the modeling of
the successive occurrences of these events and since in the beginning they simply
kept track of those with at least four fatalities, we exclude those with only three
fatalities in the database. This data set, with some of the variables, is provided in
appendix section A. This is for the period from August 20, 1982 to January 31,
2017. The number of days during this time period was 7 = 12583 days. This data
set includes the following variables:

— Date: date of the occurrence of the mass shooting.
— DayOfWeek: the day of the week when mass shooting occurred.
— Location: this is the place where the mass shooting occurred.
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— Fatalities: this is the count of the number of deaths, excluding those of the
shooter or shooters, in the mass shooting.

— NumDaysBetw: the number of days between successive mass shootings.

— NumDaysFromFirst: the number of days starting from August 20, 1982, the date
of the first recorded mass shooting, which we shall consider as the time origin.

We provide some descriptive summaries of this Mother Jones data set. Figure
1 plots the number of days between mass shootings at each of the occurrences
of a mass shooting together with a distributional histogram of the inter-event
times. One may observe from this plot that the inter-event times are decreasing
as time increases. Figure 2 depicts the number of fatalities at each of the mass
shooting events together with its distributional histogram. It is not evident that
the number of event fatalities increases or decreases as time increases. Another
interesting summary is the days of the week in which mass shootings occur. Table
1 provides a frequency/percentage table for the number of mass shootings for
cach of the seven days of the week. A chi-square goodness-of-fit test of the null
hypothesis that the probabilities of mass shootings for each of the days are equal
leads to a p-value of 0.1154, hence based on the observed Mother Jones data set, it
could not be concluded that some days are more prone to mass shootings at the
5% level of significance.

Fig. 1 Plot of the number of days from the time origin of mass shooting occurrences and the
inter-event times and a histogram of the inter-event times.
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Table 1 Frequency and percentages of occurrences of mass shootings for each day of the week.

Day of Week | Sun Mon Tue Wed Thu Fri Sat | Total
Frequency 11 15 8 16 15 10 4 79
Percentage 139 190 101 203 19.0 127 5.1 100
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Fig. 2 Plot of the number of days from origin of mass shooting occurrences and the number
of fatalities.
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3 Stochastic Models

Before proceeding, we first introduce our notation to facilitate describing the
models to be considered. We let {N(s),0 < s < 7} be the stochastic process in
which N(s) is the number of mass shootings that have occurred over (0, s] with
N(0) = 0. Note that we do not count the mass shooting at the time origin. 7
represents the time of the end of the monitoring period. We let §s denote the
history or all the information up to time s. Associated with this stochastic process
are the sequences of random variables {So = 0,51, 52,...,5k,Sk+1 = T} with
K = N(7—), which are the successive times in which the mass shootings occurred,
and {T1,T»,...,Tk,7 — Sk} which denotes the successive inter-event times. In the
Mother Jones data set, the Sy’s are given by the variable NumDaysFromFirst, while
the {T}}’s are given by the variable NumDaysBetw. We also introduce the process
{F(s),0 < s < 7} with F(s) denoting the total number of fatalities up to time s,
including the number of fatalities at the mass shooting that occurred at the time
origin. Thus, at time Sy the number of fatalities is AF(Sg) = F(Sg) — F(Sg—),
which are the values contained in the variable Fatalities in the Mother Jones data
set.

At this point we describe the general specification of the model for the counting
process {N(s),0 < s < 7}. We first introduce the backward recurrence time process
{€(s),0 < s < 7}, where £(s) = s — Sy (s—), which is the elapsed time up to s since
the last mass shooting. The general stochastic model that we consider for the
process {N(s)} is of form

Pr{dN(s) > k|Fs—} =
Mo[E(s)] exp {I(s)k + X(s)B} (ds)I{k = 1} + op(ds) (1)

where I{-} is the indicator function, I(s) = (I1(s), I2(s),...,Ip(s)) is a vector of
internal covariates, and X(s) = (X1(s), X2(s), ..., Xq(s)) is a vector of external co-
variates, both of which are measurable with respect to Fs_. We will allow the inter-
nal covariate vector to be dependent on a parameter. See [10] for discussions of in-
ternal and external covariates. The regression coefficients are x = (k1, 2, ..., fp)"
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and B = (B1,B2,-..,0¢)". The function \g(-) is a baseline hazard rate function,
which could either be parametrically specified or non-parametrically specified. Ob-
serve that the effective age used in Ao(-) is the time elapsed since the last mass
shooting, the backward recurrence time. Our reason for doing so is our thinking
that upon occurrence of a mass shooting, a re-start or a renewal transpires. At the
same time, we include in the model the potential impact of internal covariates and
external covariates which could increase or decrease the intensity of mass shoot-
ings relative to the rate A\o(-). This model belongs to the general class of dynamic
recurrent event models in [13].
If we define the process {A(s),s < s <7} via

A(s) = /O " MolE(0)] exp {T(w) + X (v)3} do, 2)

then the process {M(s),0 < s < 7} with M(s) = N(s) — A(s) is a square-integrable
zero-mean martingale with predictable quadratic variation process {(M)(s),0 <
s < 7} given by (M)(s) = A(s). For theoretical background, see [2]. The model
parameters are \o(+), , 8, and any other parameter in the internal covariate vector.
Under this model, the likelihood function based on the data {N(s),0 < s <7} is

K
Ly = [H Ao () exp {L(Sk )k + X(Sk)ﬂ}] %

k=1

exp {— /(: Xo[€(v)] exp {I(v)k + X (v)B} dv} .

By taking specific forms of Ag(+) and the internal covariates I and external covari-
ates X, we obtain special models. In the succeeding sections, we consider fitting
simple models belonging to this general class of models. We defer consideration
of models that have external covariates to future papers, but focus instead in this
paper on those with an internal covariate representing the number of previous
mass shootings. Likelihood-based inference for these models have been discussed
in several papers. When the model is parametric in the sense that the baseline
hazard A\o(-) belongs to a parametric family, then the vector of ML estimators is
the maximizer of L,. If the baseline hazard is non-parametrically specified, the
approach using profile and/or partial likelihoods are as discussed in [13].

4 HPP Model

The homogeneous Poisson process (HPP) is typically the first model to consider
when fitting recurrent event data. As such, we first consider an HPP as a possible
model for the occurrences of mass shootings. The HPP model arises from the gen-
eral model by taking Ao(t) = A and excluding the internal and external covariates
from the model. Thus, there is only one model parameter, A, which is the rate
of mass shooting occurrences. See the recent pedagogical paper [12] concerning
the HPP model. We fitted this HPP model using the Mother Jones data set. The
maximum likelihood estimate (MLE) of X is

. K 78
A= T 12583 0.0062,
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Fig. 3 Plot of the number of days from origin of mass shooting occurrence and the cumulative
number of mass shootings. Time origin corresponds to August 20, 1982. The red line passing
through zero has slope equal to A = 0.0062, which is the maximum likelihood estimate of the
rate of the fitted HPP model.
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where K = 78 is the total number of observed mass shootings over the monitoring
period (0,7]. In our setting, the monitoring period is from 0 days (time origin)
to 7 = 12583 days. The times of mass shootings are provided by the variable
NumDaysFromOrigin in the Mother Jones data set. A plot of this data is provided in
Figure 3. The last point in this plot corresponds to the pair of value (7, 78), where
78 is the value of K. The straight line passing through zero is the line whose slope
is A\

In [12] a procedure for testing the adequacy of the HPP model, given event
occurrence times over a monitoring interval, was presented. This procedure was
called the V-test. Applying this V-test, we find the value of the statistic to be
V = 224.26 with an associated p-value of 0.0003 for testing the null hypothesis
that the HPP model holds. Thus, based on the Mother Jones data set, the HPP
model is an inadequate model for the occurrences of mass shootings in the United
States. The inadequate fit could also be noted from the fact that the line At
is always above the graph of (Sg,k),k = 0,1,2,..., K, where Sy is the time of
occurrence of the kth mass shooting. If an HPP model is adequate, we would see
that the straight line and the graph of {(Sk,k)} will be close to each other. In
fact, the observed plot appears to indicate that the inter-event times of the mass
shootings are ominously getting stochastically shorter as time increases.

5 Dynamic Recurrent Event Models

Noting that the HPP model does not fit well the observed data, we now consider a
more general dynamic model for the occurrences of mass shootings. The simplest
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parametric dynamic model that utilizes N (s—) as the sole dynamic covariate is the
Weibull dynamic regression model, which includes as a special case the exponential
dynamic regression model (cf., [10]). This specifies that

Xo(t;0 = (a,m) = (am)(yt)* ™" and  I(s) = N(s—).

When o = 1, then this is the dynamic exponential regression model. When Aq(-)
is simply assumed to be some hazard rate function, then we obtain a dynamic
Cox proportional hazards model [4]. These models could be fitted easily using the
survreg and coxph object functions in the survival library in the R statistical
platform [14]. The results of these model fittings are provided below.

For the exponential dynamic regression model the fitted model has

7 =0.003319 and & =0.019541.

It is found that  is significantly different from zero. In our initial fittings, we
also included the number of fatalities of the preceding mass shooting, but this did
not turn out to be a significant predictor, hence we did not include this dynamic
covariate in the Weibull and Cox PH model fittings. For the Weibull dynamic
regression model, the estimates of the parameters are

& = 1.1285,7 = 0.0031, x = 0.0215.

It is found that « is significantly different from 1.0 (the exponential baseline hy-
pothesis), and « is significantly different from 0.

Fitting the semi-parametric Cox proportional hazards model with I(s) = N(s—)
as the internal dynamic covariate, we find the estimate of the associated regression
coefficient to be

/= 0.02012.

A test of the hypothesis k = 0 leads to the conclusion that the dynamic covariate
is an important predictor.

In all of these fits, we note that the estimates of the regression coefficient of
N(s—) are all positive, indicating that there is an increase in the rate of occurrence
of mass shootings with an increase in the number of occurrences of previous mass
shootings. Of course, this could simply be that N(s—) is a surrogate of calendar
time and as time increases there is an increase in the rate of mass shootings,
possibly due to an increase in the population of people or the higher availability
of guns. See, for instance, [5,15,6].

For these three models, we also estimated the baseline cumulative hazard func-
tion, which is a functional parameter encoding the rate of mass shootings after
correcting for the effect of time or prior mass shootings. Figure 4 provides the
three estimates together. Observe that all three estimates are all close to being
linear. However, note that the nonparametric (or semi-parametric) estimate, the
so-called Aalen-Breslow-Nelson (ABN) estimate, obtained via the Cox PH model
shows a bump over the linear and Weibull fits in the region from about 300 days
to 500 days. This bump may be a manifestation of the so-called contagion effect
with the fitted Weibull baseline serving as an ambient rate of the occurrence of
mass shootings. However, we again point out that this is a difficult hypothesis
to prove with the available data. At the same time this demonstrates a potential
advantage of the semi-parametric model over the parametric Weibull model since
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Fig. 4 Super-imposed plots of the estimated baseline cumulative hazard functions under the
dynamic exponential, Weibull, and Cox proportional hazards models, with internal covariate
being the number of prior mass shootings.
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it may have the ability to potentially tease out such contagion effect. To further
explore this issue, we present a plot of the estimates of the baseline hazard prob-
abilities in Figure 5 and obtain associated kernel estimates of the baseline hazard
rate function Ao(-) based on this ABN estimate. The kernel estimator used is given
by

1 (v—t 1yt
So(t) = [ i () ddow) = 0 1k (1) A
o0 = [ 5 () o) = 323 () A
where ¢;,l = 1,2,..., L, are the jump times of the ABN estimate Ag, which are
Aot = Ao(ty) — Ao(t;—),1 = 1,2,..., L. These are the estimated baseline hazard
probabilities depicted in Figure 5. K(-) is a kernel function which we set to be the
Epanechnikov kernel

K(v) = (1—v?)31{jv] < 1}.

In our implementation, we specified four values for the bandwidth h: 100, 200,
300, and 400. Figure 6 shows these kernel estimates of the baseline hazard rate
Xo(+). In all four estimates, we notice the increasing trend and the bump(s) in
the hazard rate estimates from time zero until about 300 days, which indicate an
increase in the chances of another mass shooting over this period just after a mass
shooting. In fact, looking at the first estimate corresponding to the bandwidth
h = 100, leading to the wiggliest estimate, we notice the first bump in the baseline
hazard rate estimate at 71 days (hazard rate estimate of 0.002898) and the second
bump at 296 days (hazard rate estimate of 0.004923). These first two bumps in
the baseline hazard estimate may be an indication of the presence of a contagion
effect in mass shootings.
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Fig. 5 Estimates of the discrete hazard probabilities based on the ABN estimate of Ag(-).

0.5

04

Hazard Probability Estimate
0.2

0.1

| asacke bdmine llll'll”ll |

[0} 200 400 600 800

0.0

Inter-Event Time

Fig. 6 Super-imposed plots of the kernel estimates of the baseline hazard rate function cor-
responding to four bandwidths. The bandwidths chosen were h € {100,200, 300,400} days.
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There has been papers discussing the possibility of such a contagion effect. The
paper [15] discussed the potential impact of media coverage after mass shootings
and suicides in the context of increasing the incidence of subsequent mass shootings
or suicides. The authors presented mathematical contagion models that tried to
tease out the contagion effect arising from the enhanced media coverage. They
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also examined the impact of mental health illness and firearm availability in states.
Based on the data sets that they analyzed about mass killings and school shootings
they found a significant contagion effect. The Pacific Standard article [11] also
examined the impact of intense media coverage of mass shootings in the context
of an increasing incidence of mass shootings over time.

5.1 Bootstrapping Dynamic Recurrent Event Models

In this subsection we discuss the process of bootstrapping from these dynamic
recurrent event models. This will enable us to estimate the standard errors of esti-
mates, and also enable the assessment of significance in goodness-of-fit procedures
discussed in the next subsection.

5.1.1 Dynamic Weibull Model

How do we generate the bootstrap samples? Such bootstrap sample generation
should take into account the dynamic aspects of the event generation. Consider
first the situation where the baseline hazard is Weibull. Based on the observed
data, we are able to estimate the Weibull parameters («,n) and the regression
coefficient k. Let the estimates be denoted by (&,7,%). To generate one (para-
metric) bootstrap sample over the monitoring period [0, 7], we could implement
the algorithm presented in appendix section B, which is coded in the R syntax.
This algorithm incorporates the dynamicity of the event occurrences. Through
this bootstrapping procedure we are able to obtain nonparametric estimates of
the standard errors of estimates of the model parameters. For the fitted Weibull
regression, using Mboot = 10000 bootstrap replications, we found the following
bootstrap standard error (bSE’s) estimates of the parameter estimates:

bSE(a) = 0.10888; bSE(7) = 0.00061; and bSE(i) = 0.00618.

The histograms of the 10000 bootstrap estimates of «, 1, and k are provided in
Figure 7. We note that in our bootstrap implementation we put an upper limit
to the observed number of events in a bootstrap sample to 1000 (the maxEvents
in the input to the algorithm). Theoretically, there is the possibility of explosion,
that is, the number of events observed in a finite interval increases without bound
(see, for instance, [7]) with positive probability. In practical situations, such an
eventuality will not be observed, hence putting a large upper limit to the number
of observed events is an acceptable solution to this ‘blowing up’ phenomenon,
though this solution may induce some bias. However, we assess that the induced
bias is negligible since the proportions of bootstrap samples reaching the upper
limit of 1000 was very low out of the 10000 bootstrap samples.

5.1.2 Dynamic Cox Model

When a non-parametric baseline hazard rate function A\o(+) is specified, the portion
in the algorithm for the Weibull model containing the two code lines

U
T

runif (1)
(-exp(-kappa*Xcur)*log(U))~(1/alpha)/eta
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Fig. 7 Histograms of the estimates of o, 1, and k based on the 10000 bootstrap samples under
the dynamic Weibull regression model.
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need to be replaced by generating a value from the observed inter-event times with
probabilities induced by the ABN estimate of Ag(-). The replacement code line is
presented after Lemma 1.
To amplify, denote the estimate of Ag(-) by Ap(-) with jump points v; < vg <
. < vg. For a covariate value of z, then the hazard probabilities under the
dynamic model are

Aj(z) = hojexp{iz},j=1,2,..., L, (3)

where Ao; = Ao(vj) — Ao(vj_1) for j = 1,2,...,L are the estimates of the base-
line hazard probabilities at the observed complete inter-event times. It is possible
that 5\](:0) as computed exceeds 1, so if this occurs we set the value to 1. How-
ever, these hazard probabilities need not induce a proper set of probabilities on
the set {vi,v2,...,vp} if :\L(a:) < 1. To induce a proper set of probabilities, we
always set A 1(z) = 1, equivalent to considering the largest observed gap-time as
complete. That imposing this condition leads to a proper set of probabilities on
{v1,v2,...,vp} follows from the following lemma.

Lemma 1 Let A1, Xa,..., A, be such that Aj € [0,1],5 =1,2,...,L—1, and A\j, = 1.
Then, letting

j—1
i=1
we have Z]If:lpj =1, that is, p1,p2,...,pL, determines a probability mass function.

Proof A simple inductive proof establishes the result, so we leave the proof as an
exercise.
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For these j\j (z),7=1,2,..., L, with L (z) =1, we then define the probabilities

B(z) = {H[l - xj(x)]} A(2)j=1.2... L

=1

An observation is then generated from the set v = {v1,v2,...,v} according to
the probabilities p = (p1 (), p2(x),...,pr(x)) by using the R code

T = sample(v,1,prob=p)

with x = Xcur in the computation in (3). This is the command that replaces the two
code lines mentioned above to generate an observation from the semi-parametric
dynamic Cox model. The algorithm in R syntax is provided in appendix section C.
It takes as input the arguments timein and hazin, which are the distinct complete
inter-event times and the baseline hazard probability estimates, respectively, from
the ABN estimate.

In this nonparametric bootstrap, the issue of explosion does not arise since
there are just a finite number of possible positive values of the generated inter-event
time. Also, as in the parametric model, we could use this bootstrap procedure to
obtain an estimate of the standard error of the estimator of k, whose estimate is & =
0.02012. The bootstrap estimate of its standard error, based on 10000 bootstrap
replications, is bSE(#) = 0.00582. The estimate of the bootstrap distribution of
the estimator of x based on the 10000 bootstrap replications is displayed in Figure
8.

Fig. 8 Histogram of the estimates of k based on the 10000 bootstrap samples under the
dynamic Cox regression model.
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5.2 Goodness-of-Fit Testing of Fitted Models

In the simple dynamic models that were fitted, if we partition the monitoring
period (0,7] into L + 1 intervals given by 0 = tg < t1 <ta < ... <ty <tpy1 =T,
then the number of events observed in the interval I} = (¢;_1,t;] is Oy = N(¢;) —
N(t;_1). If the assumed model holds, then the estimated expected number of events
in the interval I; is given by

ot
E / XO[S(’U)]B’%N(U_)d’U

ti—1

K+1  min(t;,5;)
= / I{max(tl_l,Sj,l) < min(tl,Sj)} X
=1 max(t;—1,Sj_1)
5\0(1) - SN(i,_))eﬁN(v_)dU
K+1
= Z e"‘O_l)I{maX(tl_l,Sj_l) < min(t;, Sj)} x
j=1

min(tl,Sj)—Sj_l .
/ Ao(w)dw

max(t;—1,5j-1)—S;j—1
K+1 o
= > UV {max(y -y, $j-1) < min(y, S5)} x
i=1

[Ao(min(t;, $5) = 8j-1) = Ao(max(ti1,8;-1) = Sj-1)] .
For the Weibull baseline, we will have
Ao(t) = (A)*I{t > O};

whereas, for the non-parametrically specified baseline, we will use the ABN esti-
mate of Ag(-) from the coxph fit to evaluate Ag(t).

Analogously to the goodness-of-fit test of Akritas [1] (see also the goodness-of-
fit procedure in [8,9]), we may use the Pearson-type test statistic

L+1 AN
(01 - L)
=Yy -t

for assessing the goodness-of-fit of the fitted model. Significance of the observed
value of Q? could be assessed by comparing to a chi-square distribution with
degrees-of-freedom L minus the number of estimated parameters, or by generating
bootstrap samples and obtaining an estimate of the null (that is, that the assumed
model is adequate) sampling distribution of the Q? statistic.

A bootstrap assessment of the significance of the Q? appears to be more re-
liable in this case since if we utilize the ML estimates of the parameters based
on the ungrouped data, then the chi-square distribution may not be the appro-
priate approximate distribution to use. There is also the un-examined impact of
the randomness of K, the number of events observed over the monitoring period.
We believe that the bootstrap approximation of the P-value automatically incor-
porates these issues. There is also the subjective decision of how many intervals
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Table 2 The interval upper boundaries together with the observed frequencies and estimated
expected frequencies under the dynamic Weibull model and the dynamic Cox model in the
implementation of the Pearson-type goodness-of-fit for the fitted models. The lower boundary
of the first interval is zero.

Interval Upper | Observed Freq Expected Freq Expected Freq
Boundary Frequency (Weibull) (Cox)
1398.11 2 4.899 4.328
2796.22 5 9.647 9.418
4194.33 10 8.387 8.240
5592.44 4 9.270 9.028
6990.55 11 10.191 10.735
8388.67 4 13.479 12.491
9786.78 12 12.989 13.5637
11184.89 14 15.065 14.625
12583.00 16 19.553 19.169
Q? =14.78 Q% =13.00
(Bootstrap-P = .07) | (Bootstrap-P = .16)

in the partition and what the boundaries should be. The simplest, but which may
not be best, is to use equal length intervals, and to have L ~ v/K intervals in the
partition. Clearly, these issues require more in-depth theoretical studies. Our goal
in this paper is to simply utilize a simple ad hoc goodness-of-fit procedure to assess
the adequacy of the fitted models.

We implemented these ideas by developing appropriate object functions in R
[14]. When we applied to the mass shooting data set, we used 10000 bootstrap
replications, equal-length partition, and with . = 8. Table 2 presents the inter-
vals together with the observed frequency and the estimated expected frequencies
under the dynamic Weibull model and dynamic Cox model. Indicated in the last
two rows of this table are the values of Q2 together with their bootstrap P-values.
For the dynamic Weibull model, we find Q2 = 14.7870 and the associated boot-
strap P-value is 0.0769. This P-value is close to 0.05, possibly indicating that the
dynamic Weibull model is not the most appropriate model. Figure 9 presents the
histogram of the Q? goodness-of-fit statistic for the 10000 bootstrap samples un-
der the Weibull model. For the dynamic Cox model, we find Q% = 13.0051 with
an associated P-value of 0.1659. This appears to indicate that the dynamic Cox
model is a better fit to the data than the dynamic Weibull model. We hypothe-
size that this could be due to the fact that the Weibull model will not be able to
model a contagion effect or a bump in the baseline hazard, whereas the dynamic
Cox model with a nonparametrically-specified baseline hazard will be able to do
so. But this remains a hypothesis and this will be difficult to validate with the
existing data. We also mention that among the 10000 bootstrap replications, there
were some outlying values of the Q2-statistic under the dynamic Cox model. This
could be seen from the histograms of the Q2 and the logarithm of this Q? statistic
which are both depicted in Figure 10.

6 Forecasting Mass Shootings

An oft-quoted saying, attributed to different people (Nostradamus, Niels Bohr,
Mark Twain, Yogi Berra, others), is that:
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Fig. 9 Histograms of the Q2 goodness-of-fit statistic based on the 10000 bootstrap samples
under the dynamic Weibull regression model. The vertical blue line corresponds to the observed
Q2-statistic.
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It’s Difficult to Make Predictions, Especially About the Future.

And so it is the case with predicting or forecasting when the next mass shooting
in the United States is going to occur, even with the aid of the stochastic models
fitted to the observed data. Mass shootings are as unpredictable as earthquakes.
However, these fitted models provide some guidance on future mass shooting oc-
currences. For instance, starting from February 1, 2017, one may inquire about the
probability that at least one mass shooting will occur in the US during the next
four months, that is, until May 31, 2017, which covers 120 days, given the infor-
mation until January 31, 2017. Using the fitted dynamic Cox model, an estimate
of this probability is

Pr{25 < T* < 146|data until 1/31/2017}

= 1—Pr{T" > 146|data until 1/31,/2017}

2 2 eXP{(R)('m)}
—1- [F0(146) /F0(25)]

exp{(.02012)(78)}

=1- | ]

{I: 25<,<146}
=1-0.1780

= 0.8220,
where T™ represents the time-to-occurrence of the next mass shooting starting

from January 6, 2017, the time of last mass shooting prior to February 1, 2017.
The value of 25 is the number of days from 1/6/2017 until 2/1/2017, while the
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Fig. 10 Histograms of the Q2 and log(Q?) goodness-of-fit statistics based on the 10000 boot-
strap samples under the dynamic Cox regression model. The vertical blue line corresponds to
the observed Q2 and log(Q?) statistics.
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value of 146 is the number of days from 1/6/2017 until 5/31/2017. Note that

the division by Fy(25) in the second line is because information up to 1/31/2017
indicated that T > 25, which becomes a conditioning event.

Thus, there is a not-so-insignificant probability of about 82% of at least one
mass shooting occurring during the period from February 1, 2017 to May 31, 2017,
given the information up to January 31, 2017. Of course, from the perspective of
helping to prevent the occurrence of a mass shooting, the probability estimate
above will not be of direct help since it does not pinpoint when and where a
mass shooting will occur nor could it help in identifying potential mass shooter(s).
[Note: As of May 1, 2017, the date of initial draft of this manuscript, there has
indeed been at least one event since February 1, 2017 that qualifies as a mass shoot-
ing. The first occurred last February 6, 2017 in Yazoo City, Mississippi claiming
four victims, and another one at Toomsuba, Mississippi last February 21, 2017,
also with four victims.]

7 Concluding Remarks

In this paper we analyzed data pertaining to the commission of a mass shooting
in the United States spanning the period from August 20, 1982 to January 31,
2017. The data was compiled by the magazine Mother Jones, and it includes mass
shootings with at least four fatalities, excluding the shooter or shooters. The ad-
vent of a mass shooting is one of the most unnerving events in our society. The
analysis performed in this paper utilized dynamic event-time models, dynamic in
the sense that the occurrence of a mass shooting depends to some extent on what
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has transpired before. We fitted four models: the homogeneous Poisson process, a
dynamic exponential regression model, a dynamic Weibull regression model, and
a dynamic Cox model, the latter being a semi-parametric model. We found that
the first two models did not fit the data well, while the Weibull-based and the
Cox-based models offer better fits to the observed data, with the Cox-based model
having the advantage in that it potentially detects a contagion effect through the
nonparametric baseline hazard. A contagion effect is one when the rate of occur-
rence of a mass shooting bumps up a certain period after the last mass shooting,
and this has been a topic of interest in several papers dealing with mass shootings.
However, we emphasize that it is difficult to validate the presence of this conta-
gion effect on the basis of available data. Both the dynamic Weibull regression
and dynamic Cox regression fitted models indicate that the number of prior mass
shootings has an effect in terms of the waiting-time for the next occurrence of a
mass shooting, with this effect being to stochastically shorten such waiting time.
It is certainly conceivable that the number of prior mass shootings serves as a
surrogate to calendar time and that as time progresses, the rate of incidence of
mass shootings also increases owing to an increase in availability of guns or due
to an increasing population size.

We also proposed methods for validating the fitted models through Pearson-
type goodness-of-fit tests. However, the determination of the significance of the
observed values of these Pearson-type test statistics is done via bootstrapping
methods. This led to an examination of the proper way in which to generate
bootstrap samples that incorporates the dynamic mechanisms in which events
occur. Using the proposed goodness-of-fit methods, we found that the Cox-based
model best fits the observed data, though the procedure did not lead to rejection
(at level of significance 5%) of the dynamic Weibull model. We also discussed the
issue of forecasting the advent of a mass shooting using the fitted Cox dynamic
model, with the caveat that the fitted models will not truly be of practical value in
terms of preventing when and where a mass shooting will occur nor in pinpointing
potential mass shooter(s).

Further studies are warranted regarding the modeling and analysis of mass
shootings. More elaborate dynamic models incorporating information from exter-
nal covariates and possibly with additional information other than those provided
by the Mother Jones data set will clearly be of interest. It would also be interest-
ing to change the internal covariate from the number of mass shootings that have
occurred since the time origin to the number of mass shootings that have occurred
within a certain period, say two years, prior to the time under consideration.
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A Mother Jones Mass Shootings Data Set

In the data set below, the variable name abbreviations are: F = Fatalities; T = NumDays-
Betw; and S = NumDaysFromFirst. The time origin coincides with 8/20/82, so the value of S
corresponds to the number of days elapsed since this date.

0N U WN -

Date DayOfWeek Location F T S
6/29/84 Thursday Dallas, Texas 6 679 679
7/18/84  Tuesday San Ysidro, California 22 19 698
8/20/86  Tuesday Edmond, Oklahoma 15 763 1461
4/23/87 Wednesday Palm Bay, Florida 6 246 1707
2/16/88 Monday Sunnyvale, California 7 299 2006
1/17/89 Monday Stockton, California 6 336 2342
9/14/89 Wednesday Louisville, Kentucky 9 240 2582
6/18/90 Sunday Jacksonville, Florida 10 277 2859
10/16/91  Tuesday Killeen, Texas 24 485 3344
11/1/91 Thursday Iowa City, Iowa 6 16 3360
11/14/91 Wednesday Royal Oak, Michigan 5 13 3373
5/1/92 Thursday Olivehurst, California 4 169 3542
10/15/92 Wednesday Watkins Glen, New York 5 167 3709
7/1/93 Wednesday San Francisco, California 9 259 3968
8/6/93 Thursday Fayetteville, North Carolina 4 36 4004
12/7/93 Monday Garden City, New York 6 123 4127
12/14/93 Monday Aurora, Colorado 4 7 4134
6/20/94 Sunday Fairchild Air Force Base, Washington 5 188 4322
4/3/95 Sunday Corpus Christi, Texas 6 287 4609
2/9/96 Thursday Fort Lauderdale, Florida 6 312 4921
9/15/97 Sunday Aiken, South Carolina 4 584 5505
12/18/97 Wednesday Orange, California 5 94 5599
3/6/98 Thursday Newington, Connecticut 5 78 5677
3/24/98 Monday Jonesboro, Arkansas 5 18 5695
5/21/98 Wednesday Springfield, Oregon 4 58 5753
4/20/99 Monday Littleton, Colorado 13 334 6087
7/29/99 Wednesday Atlanta, Georgia 9 100 6187
9/15/99  Tuesday Fort Worth, Texas 8 48 6235
11/2/99 Monday Honolulu, Hawaii 7 48 6283
12/30/99 Wednesday Tampa, Florida 5 46 6329
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311
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48

50 1

54 1

61 1

69 1

78

2/26/00  Tuesday
2/5/01 Monday
7/8/03  Tuesday

12/8/04 Wednesday

3/12/05 Saturday

3/21/05 Monday

1/30/06 Monday

3/25/06 Saturday

10/2/06 Monday

2/12/07 Monday

4/16/07 Monday

10/7/07 Sunday

12/5/07 Wednesday
2/7/08 Thursday

2/14/08 Thursday

6/25/08 Wednesday

3/29/09 Sunday
4/3/09 Friday

11/6/09 Thursday

1/29/09 Sunday
8/3/10  Tuesday
1/8/11 Saturday
9/6/11  Tuesday

0/14/11 Friday

2/22/12 Wednesday
4/2/12 Monday

5/20/12 Sunday

7/20/12 Friday
8/5/12 Sunday

9/27/12 Thursday

2/14/12 Friday

3/13/13 Wednesday

4/21/13 Sunday
6/7/13 Friday

7/26/13 Friday

9/16/13 Monday

2/20/14 Thursday

5/23/14 Friday

0/24/14  Friday

6/17/15 Wednesday

7/16/15 Thursday

10/1/15 Thursday

12/2/15 Wednesday

2/20/16 Saturday

6/12/16 Sunday
7/7/16 Thursday

9/23/16 Friday
1/6/17  Friday

<NA> <NA>

Wakefield, Massachusetts
Melrose Park, Illinois
Meridian, Mississippi
Columbus, Ohio
Brookfield, Wisconsin

Red Lake, Minnesota
Goleta, California
Seattle, Washington
Lancaster County, Pennsylvania
Salt Lake City, Utah
Blacksburg, Virginia
Crandon, Wisconsin

Omaha, Nebraska

Kirkwood, Missouri
DeKalb, Illinois
Henderson, Kentucky
Carthage, North Carolina
Binghamton, New York

Fort Hood, Texas
Parkland, Washington
Manchester, Connecticut
Tucson, Arizona

Carson City, Nevada

Seal Beach, California
Norcross, Georgia
Oakland, California
Seattle, Washington
Aurora, Colorado

Oak Creek, Wisconsin
Minneapolis, Minnesota
Newtown, Connecticut
Herkimer County, New York
Federal Way, Washington
Santa Monica, California
Hialeah, Florida
Washington, D.C.

Alturas, California

Santa Barbara, California
Marysville, Washington
Charleston, South Carolina
Chattanooga, Tennessee
Roseburg, Oregon

San Bernardino, California
Kalamazoo County, Michigan
Orlando, Florida

Dallas, Texas

Burlington, WA

Fort Lauderdale, Florida
<NA>
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49
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NA

374

41
883
519

113
25
78

105
25

B Bootstrap Sampling Algorithm: Dynamic Weibull Model

Boot

function(alpha=1.1287,eta=0.0031,kappa=0.02146,tau=12583,maxEvents=1000)

SampWeibull <-

[
o

6703
6744
7627
8146
8240
8249
8564
8618
8809
8942
9005
9179
9238
9302
9309
9441
9718
9723
9939
9963
10210
10368
10609
10647
10778
10818
10866
10927
10943
10996
11074
11163
11202
11249
11298
11350
11507
11599
11753
11989
12018
12095
12157
12237
12350
12375
12453
12558
12583
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Deltavec = NULL
Xvec =
Xcur =

K=0

c
0
0

ok = TRUE
while(ok) {

U
T

runif (1)

if ((S+T) < tau) {

(-exp(-kappa*Xcur)*log(U))~(1/alpha)/eta

if (K > maxEvents) {ok=FALSE; print("Explosion Occurring!")} #cut-off explosion

K=K+ 1
S=8+T
Xcur Xcur + 1

Svec = c(Svec,S)

Xvec = c(Xvec,Xcur)

Tvec c(Tvec,T)
Deltavec = c(Deltavec,1)
}

else {

ok = FALSE

Svec = c(Svec,tau)

Xvec = c(Xvec,Xcur)
Tvec = c(Tvec,tau-S)

Deltavec = c(Deltavec,0)

}
}

return(list(alpha=alpha,eta=eta,kappa=kappa,tau=tau,
K=K,Svec=Svec,Tvec=Tvec,Deltavec=Deltavec,Xvec=Xvec))

}

C Bootstrap Sampling Algorithm: Dynamic Cox Model

BootSampCoxPH <-

function(timein=time,hazin=haz,kappa=0.02012,tau=12583)

{

L = length(timein)
probs = rep(0,L)

S=0
Svec = 0

Tvec = NULL
Deltavec = NULL
Xvec = NULL
Xcur = 0

K=0

ok = TRUE

while(ok) {

curhaz = hazin*exp (kappa*Xcur)

for(l in 1:L) {curhaz[1]
curhaz[L] = 1

min(c(1,curhaz[1]1))}
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probs[1] = curhaz[1]
for(l in 2:L) {probs[l] = probs[1-1]*(1/curhaz[1-1] - 1)*curhaz[1]}

T = sample(timein,1,prob=probs)

if ((S+T) < taw) {

K=K+ 1
S=8+T
Xcur Xcur + 1

Xvec c(Xvec,Xcur)
Tvec = c(Tvec,T)
Deltavec = c(Deltavec,1)

Svec = c(Svec,S)

}

else {

ok = FALSE

Svec c(Svec,tau)

Xvec = c(Xvec,Xcur)
Tvec = c(Tvec,tau-S)
Deltavec = c(Deltavec,0)
}
}
return(list (kappa=kappa,tau=tau,K=K,Svec=Svec,Tvec=Tvec,
Deltavec=Deltavec,Xvec=Xvec,tau=tau))

}



